Effects of Using Two Neighborhood Structures in Cellular Genetic Algorithms for Function Optimization
نویسندگان
چکیده
We implement a cellular genetic algorithm with two neighborhood structures following the concept of structured demes: One is for interaction among individuals and the other is for mating. The effect of using these two neighborhood structures on the search ability of cellular genetic algorithms is examined through computational experiments on function optimization problems. Experimental results show that good results are obtained from the combination of a small interaction neighborhood and a large mating neighborhood. This relation in the size of the two neighborhood structures coincides with many cases of biological evolution in nature such as plants and territorial animals. It is also shown that the search ability of cellular genetic algorithms is deteriorated by the opposite combination of the two neighborhood structures.
منابع مشابه
Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization
In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...
متن کاملCOMPARATIVE COSTS OF THE PRODUCTION, TRANSPORT AND ASSEMBLY STAGES OF PRESTRESSED PRECAST SLABS USING GENETIC ALGORITHMS
In the precast structures, optimization of structural elements is of great interest mainly due to a more rationalized way that elements are produced. There are several elements of precast prestressed concrete that are objects of study in optimization processes, as the prestressed joist applied in buildings slabs. This article inquires into cost minimization of continuous and simply supported sl...
متن کاملModeling and scheduling no-idle hybrid flow shop problems
Although several papers have studied no-idle scheduling problems, they all focus on flow shops, assuming one processor at each working stage. But, companies commonly extend to hybrid flow shops by duplicating machines in parallel in stages. This paper considers the problem of scheduling no-idle hybrid flow shops. A mixed integer linear programming model is first developed to mathematically form...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006